Covert Malware Launching




Covert Malware Launching

Techniques for executing malware with the goal of avoiding
detection

o Malware wants to hide from task manager, antivirus, etc.

Analysts must be aware of common covert malware launching
techniques

o Be aware of common Windows API call indicators
o Find covertly launched malware on a live system



Loader / Launcher

A category of malware that contains a payload to be covertly
executed

Typically, the payload is obfuscated on disk to hide malicious
functionality from static analysis

Example: A loader contains an obfuscated PE file as a
resource. It loads and deobfuscates the resource, then injects
into explorer.exe to give it execution.



Process Injection

Most popular type of covert malware launching
Malware injects code into a legitimate process
Typically indicated by VirtualAllocEx and WriteProcessMemory

3 major types: DLL injection, direct injection, process
replacement



DLL Injection — Part 1

Type of process injection where a victim process is forced to
load a malicious DLL

Step 1: Loader gets a handle to the victim process

Q

Q
Q
Q

Takes a snapshot of the running processes and iterates over them
Gets the PID of the victim process
Obtains handle to the process using its PID

Typical API calls: CreateToolHelp32Snapshot, Process32First,
Process32Next, OpenProcess



DLL Injection — Part 2

Step 2: Loader writes name of DLL in victim process’'s memory

o VirtualAllocEx — given handle to victim process, allocate space for the
name of the malicious DLL

o WriteProcessMemory — Writes malicious DLL name to space
allocated with VirtualAllocEx



DLL Injection — Part 3

Step 3: Loader calls CreateRemoteThread with:

a

a

Q

NProcess = handle to the target process from previous step
pStartAddress = address of LoadLibraryA

pParameter = name of malicious DLL file to be injected

This forces the target process to create a new thread and call
LoadLibrary on the malicious DLL

o Executes any code in the malicious DLL’'s DIlIMain export
o Why?



Direct Injection — Part 1

Injects code directly into victim process

More flexible but has some downsides:
o Often requires a lot of custom code
o Might accidentally corrupt the process being injected into



Direct Injection — Part 2

Step 1: Loader writes any needed data to the victim process
o Allocate memory for data with VirtualAllocEx
o Write data to victim process with WriteProcessMemory

Step 2: Loader writes any needed code to the victim process
o Allocate memory for code with VirtualAllocEx
o Write code to victim process with WriteProcessMemory



Direct Injection — Part 3

Step 3: Loader calls CreateRemoteThread with:
o hProcess = handle to the target process

o IpStartAddress = address of injected code

o IpParameter = address of injected data

May need to do more stuff

o For example, resolving any needed imports at runtime with
LoadLibraryA / GetProcAddress

10



Process Replacement — Part 1

Overwrites the memory space of a running process with a
malicious executable

o Gives the malware the same privileges as the process being replaced

Step 1: Create malicious process in a suspended state

o Call CreateProcessA on malicious process
o Pass parameter dwCreationFlags = 0x4 (CREATE_SUSPENDED)
o The process’s main thread is suspended at the entry point

11



Process Replacement — Part 2

Step 2: Get a handle to the victim process

Step 3: Release memory of a section(s) of the victim process
o Call ZwUnmapViewOfSection with victim process’s handle

Step 4. Allocate new memory to the victim process
o Call VirtualAllocEx to allocate memory for new executable

12



Process Replacement — Part 3

Step 5: Write malware sections to victim process space
o Call WriteProcess memory, often in a loop

Step 6: Modify victim thread’s context
o Call SetThreadContext
o Change thread’s entry point to start of the malicious code

Step 7: Resume the malicious thread
o Call ResumeThread

13



Detection using Process Explorer

Use the “Verify Process” to check signed files for modifications

Use the strings view to check for different strings in memory
than on disk

Investigate the lower pane view for unusual DLLs

14



Hooks

Users generate events that are sent to the OS

The OS sends messages created by these events to threads
registered to receive them

A Windows hook can intercept these messages and execute
code

15



Creates a Windows hook

SetWindowsHookEX
o idHook — Specifies type of hook to install
o lpfn — Address of hook procedure
o hMod — Handle to the DLL containing the hook procedure

o dwThreadld — Identifier of the thread to hook. If it is O, it hooks all
threads on the system

16



Hook Injection — Part 1

Hook injection: method for loading malware using hooks
o Can run malicious code whenever a particular message is intercepted

o Can make sure a specific DLL is loaded into a victim process’
address space

Will discuss an example of how hook injection can be used to
load a DLL

17



Hook Injection — Part 2

Step 1: Loader gets address of hook procedure
o Loader calls LoadLibraryA on malicious DLL

o Loader calls GetProcAddress to get the address of the hook
procedure in the malicious DLL

Step 2: Obtain identifier of victim thread

o Get a handle to the victim thread using CreateToolHelp32Snapshot,
Thread32First, Thread32Next, OpenThread

o Call GetThreadld, passing in the victim thread’s handle

18



Hook Injection — Part 3

Step 3: Loader calls SetWindowsHookEXx with:

o idHook = type of message to hook (typically an uncommon one)
o |lpfn — Address of malicious DLL’s hook procedure

o hMod — Handle to the malicious DLL

o dwThreadld = Victim thread’s 1D

Step 4: Loader sends a message with same type as idHook
parameter to the victim process

o This forces the victim process to load the malicious DLL, any code in
its DIIMain is executed

19



	Covert Malware Launching
	Covert Malware Launching
	Loader / Launcher
	Process Injection
	DLL Injection – Part 1
	DLL Injection – Part 2
	DLL Injection – Part 3
	Direct Injection – Part 1
	Direct Injection – Part 2
	Direct Injection – Part 3
	Process Replacement – Part 1
	Process Replacement – Part 2
	Process Replacement – Part 3
	Detection using Process Explorer
	Hooks
	Creates a Windows hook
	Hook Injection – Part 1
	Hook Injection – Part 2
	Hook Injection – Part 3

