
11

Covert Malware Launching



2

 Techniques for executing malware with the goal of avoiding 
detection
 Malware wants to hide from task manager, antivirus, etc.

 Analysts must be aware of common covert malware launching 
techniques
 Be aware of common Windows API call indicators
 Find covertly launched malware on a live system

Covert Malware Launching



3

 A category of malware that contains a payload to be covertly 
executed

 Typically, the payload is obfuscated on disk to hide malicious 
functionality from static analysis

 Example: A loader contains an obfuscated PE file as a 
resource. It loads and deobfuscates the resource, then injects 
into explorer.exe to give it execution.

Loader / Launcher



4

 Most popular type of covert malware launching

 Malware injects code into a legitimate process

 Typically indicated by VirtualAllocEx and WriteProcessMemory

 3 major types: DLL injection, direct injection, process 
replacement

Process Injection



5

 Type of process injection where a victim process is forced to 
load a malicious DLL

 Step 1: Loader gets a handle to the victim process
 Takes a snapshot of the running processes and iterates over them
 Gets the PID of the victim process
 Obtains handle to the process using its PID
 Typical API calls: CreateToolHelp32Snapshot, Process32First, 

Process32Next, OpenProcess

DLL Injection – Part 1



6

 Step 2: Loader writes name of DLL in victim process’s memory
 VirtualAllocEx – given handle to victim process, allocate space for the 

name of the malicious DLL
 WriteProcessMemory – Writes malicious DLL name to space 

allocated with VirtualAllocEx

DLL Injection – Part 2



7

 Step 3: Loader calls CreateRemoteThread with:
 hProcess = handle to the target process from previous step
 lpStartAddress = address of LoadLibraryA
 lpParameter = name of malicious DLL file to be injected

 This forces the target process to create a new thread and call 
LoadLibrary on the malicious DLL
 Executes any code in the malicious DLL’s DllMain export
 Why?

DLL Injection – Part 3



8

 Injects code directly into victim process

 More flexible but has some downsides:
 Often requires a lot of custom code
 Might accidentally corrupt the process being injected into

Direct Injection – Part 1



9

 Step 1: Loader writes any needed data to the victim process
 Allocate memory for data with VirtualAllocEx
 Write data to victim process with WriteProcessMemory

 Step 2: Loader writes any needed code to the victim process
 Allocate memory for code with VirtualAllocEx
 Write code to victim process with WriteProcessMemory

Direct Injection – Part 2



10

 Step 3: Loader calls CreateRemoteThread with:
 hProcess = handle to the target process
 lpStartAddress = address of injected code
 lpParameter = address of injected data

 May need to do more stuff
 For example, resolving any needed imports at runtime with 

LoadLibraryA / GetProcAddress

Direct Injection – Part 3



11

 Overwrites the memory space of a running process with a 
malicious executable
 Gives the malware the same privileges as the process being replaced

 Step 1: Create malicious process in a suspended state
 Call CreateProcessA on malicious process
 Pass parameter dwCreationFlags = 0x4 (CREATE_SUSPENDED)
 The process’s main thread is suspended at the entry point

Process Replacement – Part 1



12

 Step 2: Get a handle to the victim process

 Step 3: Release memory of a section(s) of the victim process
 Call ZwUnmapViewOfSection with victim process’s handle

 Step 4: Allocate new memory to the victim process
 Call VirtualAllocEx to allocate memory for new executable

Process Replacement – Part 2



13

 Step 5: Write malware sections to victim process space
 Call WriteProcess memory, often in a loop

 Step 6: Modify victim thread’s context
 Call SetThreadContext
 Change thread’s entry point to start of the malicious code

 Step 7: Resume the malicious thread
 Call ResumeThread

Process Replacement – Part 3



14

 Use the “Verify Process” to check signed files for modifications

 Use the strings view to check for different strings in memory 
than on disk

 Investigate the lower pane view for unusual DLLs

Detection using Process Explorer



15

 Users generate events that are sent to the OS

 The OS sends messages created by these events to threads 
registered to receive them

 A Windows hook can intercept these messages and execute 
code

Hooks



16

 SetWindowsHookEx
 idHook – Specifies type of hook to install
 lpfn – Address of hook procedure
 hMod – Handle to the DLL containing the hook procedure
 dwThreadId – Identifier of the thread to hook. If it is 0, it hooks all 

threads on the system

Creates a Windows hook



17

 Hook injection: method for loading malware using hooks
 Can run malicious code whenever a particular message is intercepted
 Can make sure a specific DLL is loaded into a victim process’ 

address space

 Will discuss an example of how hook injection can be used to 
load a DLL

Hook Injection – Part 1



18

 Step 1: Loader gets address of hook procedure
 Loader calls LoadLibraryA on malicious DLL
 Loader calls GetProcAddress to get the address of the hook 

procedure in the malicious DLL

 Step 2: Obtain identifier of victim thread
 Get a handle to the victim thread using CreateToolHelp32Snapshot, 

Thread32First, Thread32Next, OpenThread
 Call GetThreadId, passing in the victim thread’s handle

Hook Injection – Part 2



19

 Step 3: Loader calls SetWindowsHookEx with:
 idHook = type of message to hook (typically an uncommon one)
 lpfn – Address of malicious DLL’s hook procedure
 hMod – Handle to the malicious DLL
 dwThreadId = Victim thread’s ID

 Step 4: Loader sends a message with same type as idHook
parameter to the victim process
 This forces the victim process to load the malicious DLL, any code in 

its DllMain is executed

Hook Injection – Part 3


	Covert Malware Launching
	Covert Malware Launching
	Loader / Launcher
	Process Injection
	DLL Injection – Part 1
	DLL Injection – Part 2
	DLL Injection – Part 3
	Direct Injection – Part 1
	Direct Injection – Part 2
	Direct Injection – Part 3
	Process Replacement – Part 1
	Process Replacement – Part 2
	Process Replacement – Part 3
	Detection using Process Explorer
	Hooks
	Creates a Windows hook
	Hook Injection – Part 1
	Hook Injection – Part 2
	Hook Injection – Part 3

