
11

Covert Malware Launching



2

 Techniques for executing malware with the goal of avoiding 
detection
 Malware wants to hide from task manager, antivirus, etc.

 Analysts must be aware of common covert malware launching 
techniques
 Be aware of common Windows API call indicators
 Find covertly launched malware on a live system

Covert Malware Launching



3

 A category of malware that contains a payload to be covertly 
executed

 Typically, the payload is obfuscated on disk to hide malicious 
functionality from static analysis

 Example: A loader contains an obfuscated PE file as a 
resource. It loads and deobfuscates the resource, then injects 
into explorer.exe to give it execution.

Loader / Launcher



4

 Most popular type of covert malware launching

 Malware injects code into a legitimate process

 Typically indicated by VirtualAllocEx and WriteProcessMemory

 3 major types: DLL injection, direct injection, process 
replacement

Process Injection



5

 Type of process injection where a victim process is forced to 
load a malicious DLL

 Step 1: Loader gets a handle to the victim process
 Takes a snapshot of the running processes and iterates over them
 Gets the PID of the victim process
 Obtains handle to the process using its PID
 Typical API calls: CreateToolHelp32Snapshot, Process32First, 

Process32Next, OpenProcess

DLL Injection – Part 1



6

 Step 2: Loader writes name of DLL in victim process’s memory
 VirtualAllocEx – given handle to victim process, allocate space for the 

name of the malicious DLL
 WriteProcessMemory – Writes malicious DLL name to space 

allocated with VirtualAllocEx

DLL Injection – Part 2



7

 Step 3: Loader calls CreateRemoteThread with:
 hProcess = handle to the target process from previous step
 lpStartAddress = address of LoadLibraryA
 lpParameter = name of malicious DLL file to be injected

 This forces the target process to create a new thread and call 
LoadLibrary on the malicious DLL
 Executes any code in the malicious DLL’s DllMain export
 Why?

DLL Injection – Part 3



8

 Injects code directly into victim process

 More flexible but has some downsides:
 Often requires a lot of custom code
 Might accidentally corrupt the process being injected into

Direct Injection – Part 1



9

 Step 1: Loader writes any needed data to the victim process
 Allocate memory for data with VirtualAllocEx
 Write data to victim process with WriteProcessMemory

 Step 2: Loader writes any needed code to the victim process
 Allocate memory for code with VirtualAllocEx
 Write code to victim process with WriteProcessMemory

Direct Injection – Part 2



10

 Step 3: Loader calls CreateRemoteThread with:
 hProcess = handle to the target process
 lpStartAddress = address of injected code
 lpParameter = address of injected data

 May need to do more stuff
 For example, resolving any needed imports at runtime with 

LoadLibraryA / GetProcAddress

Direct Injection – Part 3



11

 Overwrites the memory space of a running process with a 
malicious executable
 Gives the malware the same privileges as the process being replaced

 Step 1: Create malicious process in a suspended state
 Call CreateProcessA on malicious process
 Pass parameter dwCreationFlags = 0x4 (CREATE_SUSPENDED)
 The process’s main thread is suspended at the entry point

Process Replacement – Part 1



12

 Step 2: Get a handle to the victim process

 Step 3: Release memory of a section(s) of the victim process
 Call ZwUnmapViewOfSection with victim process’s handle

 Step 4: Allocate new memory to the victim process
 Call VirtualAllocEx to allocate memory for new executable

Process Replacement – Part 2



13

 Step 5: Write malware sections to victim process space
 Call WriteProcess memory, often in a loop

 Step 6: Modify victim thread’s context
 Call SetThreadContext
 Change thread’s entry point to start of the malicious code

 Step 7: Resume the malicious thread
 Call ResumeThread

Process Replacement – Part 3



14

 Use the “Verify Process” to check signed files for modifications

 Use the strings view to check for different strings in memory 
than on disk

 Investigate the lower pane view for unusual DLLs

Detection using Process Explorer



15

 Users generate events that are sent to the OS

 The OS sends messages created by these events to threads 
registered to receive them

 A Windows hook can intercept these messages and execute 
code

Hooks



16

 SetWindowsHookEx
 idHook – Specifies type of hook to install
 lpfn – Address of hook procedure
 hMod – Handle to the DLL containing the hook procedure
 dwThreadId – Identifier of the thread to hook. If it is 0, it hooks all 

threads on the system

Creates a Windows hook



17

 Hook injection: method for loading malware using hooks
 Can run malicious code whenever a particular message is intercepted
 Can make sure a specific DLL is loaded into a victim process’ 

address space

 Will discuss an example of how hook injection can be used to 
load a DLL

Hook Injection – Part 1



18

 Step 1: Loader gets address of hook procedure
 Loader calls LoadLibraryA on malicious DLL
 Loader calls GetProcAddress to get the address of the hook 

procedure in the malicious DLL

 Step 2: Obtain identifier of victim thread
 Get a handle to the victim thread using CreateToolHelp32Snapshot, 

Thread32First, Thread32Next, OpenThread
 Call GetThreadId, passing in the victim thread’s handle

Hook Injection – Part 2



19

 Step 3: Loader calls SetWindowsHookEx with:
 idHook = type of message to hook (typically an uncommon one)
 lpfn – Address of malicious DLL’s hook procedure
 hMod – Handle to the malicious DLL
 dwThreadId = Victim thread’s ID

 Step 4: Loader sends a message with same type as idHook
parameter to the victim process
 This forces the victim process to load the malicious DLL, any code in 

its DllMain is executed

Hook Injection – Part 3


	Covert Malware Launching
	Covert Malware Launching
	Loader / Launcher
	Process Injection
	DLL Injection – Part 1
	DLL Injection – Part 2
	DLL Injection – Part 3
	Direct Injection – Part 1
	Direct Injection – Part 2
	Direct Injection – Part 3
	Process Replacement – Part 1
	Process Replacement – Part 2
	Process Replacement – Part 3
	Detection using Process Explorer
	Hooks
	Creates a Windows hook
	Hook Injection – Part 1
	Hook Injection – Part 2
	Hook Injection – Part 3

